

CHEMICAL BIOLOGICAL DEFENSE TECHNOLOGY BASE PROGRAM

Dr. David E Tevault
Basic Research Business Area Manager

DoD Non-Med Tech Base Process

Joint Science and Technology Panel for Chemical / Biological Defense

- Addresses all phases of research in five commodity areas (modeling/simulation, detection, individual protection, collective protection, decontamination)
- **◆** Executed by Principal Investigators within Service labs
- Utilizes proposal-driven process focused by user-developed desired operational capabilities
- **♦** Responsive to development/acquisition program
- Managed as Joint Services program

Management Structure

Joint Science and Technology Panel for Chemical / Biological Defense

Joint Future Operational Capabilities Ranking: Driver for Investment

Joint Science and Technology Panel for Chemical / Biological Defense

1 BatMgt - Battle Management Systems	11 ConAvoid – Sensor Integration
2 ConAvoid - Biological Early Warning	12 Restore – Medical Diagnosis
3 BatMgt - Battle Analysis	13 ColProt – Mobile Applications
4 ConAvoid – Chemical Early Warning	14 Restore – Medical Treatment
5 BatMgt – Modeling & Simulations Training	15 ConAvoid – Radiological Early Warning
6 IndProt – Medical Prophylaxes	16 Restore – Equipment/Facilities/Large
7 ConAvoid – Biological Point Detection	17 Restore - Logistics
8 IndProt – Respiration & Percutaneous	18 ColProt – Fixed Site Applications
9 ConAvoid – Med Surveillance/ Vet Support	19 ConAvoid – Radiological Point Detection
10 ConAvoid – Chemical Point Detection	20 Restore – Personnel/Patient Decon

Non-Med CB Defense Program Taxonomy

Joint Science and Technology Panel for Chemical / Biological Defense

Aerosol Technology

Near-Term Fielded vs Far Term Desired: An Example of the User's Challenge to S&T

Joint Science and Technology Panel for Chemical / Biological Defense

Joint Bio Point Detn System

- Fully Automated
- 12 Hour Continuous Operations
- 10 Agent ID within Minutes of Detection
- Sample Isolation
- < 30 Minute Set-up

Three years

Joint Chem Agent Detector

- Hand size
- Miosis level detn of blister, nerve, blood
- Records dose
- Networked, remotely controlled

Twelve years

Joint Modular CB Detector

- Hand size (40 cu in)
- Identifies chemical agents
- Detects bio agents
- Networked

Information Systems Technology Thrust Areas

Joint Science and Technology Panel for Chemical / Biological Defense

- New thrust area for FY01-02
- Sub-thrusts include
- > Sensor integration
- > Information management
- Data fusion
- Communications interfaces
- > Visualization approaches
- Panel of experts meeting is planned to refine/develop program objectives

 Disparate sensors – non-CB sensors that can provide info on CB events

FY01 activities:

- 6.2: Survey, characterize available potential sensors, e.g., acoustic, seismic sensors, FLIRs
- 6.3: Conduct field evaluation of radar as standoff CB event cueing device as well as sensors identified in 6.2: ioint with PM-NBC

Q36/Q37

Information Systems Technology Thrust Areas

Joint Science and Technology Panel for Chemical / Biological Defense

CBW Environment

Objective: Models to track evolution of CB threats from vapor, liquid, and solid agents across range of scales from individual to theater

CBW-CFX Model

CB Planning/Analysis

Objectives: Models to describe effects of CBW on operations

Simulation Based Acquisition

Objective: Models supporting development of CBD equipment

CB Point DetectionThrust Areas

Joint Science and Technology Panel for Chemical / Biological Defense

Biological Identification

Objectives: Develop fully automated sample prep and analysis systems for unattended monitoring of air samples; transition FY02 to JBPDS

Challenges:

- > fluidics
- biomarker extraction/cleanup
- > background interference

❖ Demonstrated detection of mass and genetic markers at JPBDS requirement levels; built 2 cu ft breadboards

Reagent_Development

Objectives: Develop improved reagent candidates for implementation in fielded and developmental identifiers via Critical Reagent Program

Challenges:

- > specificity
- > shelf life
- > reproducibility

❖ Demonstrated improved sensitivity of recombinant antibodies vs available monoclonals; initiated assessment of combinatorial peptide

CB Point DetectionThrust Areas

Joint Science and Technology Panel for Chemical / Biological Defense

Detection in Water/Food

Objectives: Provide the capability to detect, identify, and quantify chemical and biological contamination in potable water

Challenges:

- > Non-traditional threat environment
- > Immature technologies
- > Sampling low level toxics

Model technology downselect process utilized fair assessment of technology candidates from all sources

Supporting Science

Objectives: Assemble database of available ambient background data and analyze for key heuristics

Challenges:

- > multiple sources of data
- disparities in collection parameters

Established joint DoD/DOE/TTCP website; data loading and analysis in process

CB Point DetectionThrust Areas

Joint Science and Technology Panel for Chemical / Biological Defense

Integrated Chem Bio Point Detectors

Objectives: Develop small, hand-size detectors to identify chemical agents and detect/discriminate biological agents

Challenges:

- > Miniaturization of detector technologies
- > Small, efficient air samplers
- Simultaneous optimization of size, selectivity, and sensitivity

* Py-GC/IMS demonstrated high detection probability and sensitivity relative to other candidates at JFT-6

Air samplers evolving to smaller size with increased efficiency

CB Standoff Detection Thrust Areas

Joint Science and Technology Panel for Chemical / Biological Defense

Chemical Standoff Detection

Objectives: Develop and demonstrate passive and active concepts for remote detection, identification, ranging, and mapping of chemical clouds in all physical forms

Challenges:

- High speed interferometry; focal plane arrays
- > Rapid data processing, software
- Laser technology to reduce size, weight of active systems

Chemical Imaging Sensor

JS Warning ID Lidar

Demonstrated 100 scan/sec operation in field with 9-pixel array passive CIS spectrometer

BioStandoff Detection

Objectives: Develop and demonstrate concepts for remote detection, identification, ranging, and mapping of biological particulate clouds

Challenges:

- Laser technology to reduce size, weight of active systems
- > Rapid data processing, software
- Spectroscopic technologies to enhance potential for classification

Short-range BSDS

Initiated panel of experts to develop and down-select concepts for exploration under Bio Standoff DTO

CB Standoff Detection Thrust Areas

Joint Science and Technology Panel for Chemical / Biological Defense

Integrated CB Standoff Detection

Objectives: Develop and demonstrate concepts for remote detection, identification, ranging, and mapping of chemical and biological clouds in all physical forms with a single sensor platform

Challenges:

- Laser technology to reduce size, weight of active systems
- > Significant advances in spectroscopy
- > Rapid data processing, software

Merge capabilities into a single small platform

Individual Protection Thrust Areas

Joint Science and Technology Panel for Chemical / Biological Defense

Clothing

Objectives: Develop overgarments against CB agents that provide increased protection with decreased impediment of wearer's performance

Challenges:

- > Selectively permeable materials
- > Interface of SPMs with garment fabric
- > Testing

❖ Developed and demonstrated two SPM garments that outperform all fielded garments and are 50% lighter

Masks

Objectives: Demonstrate concepts that enhance respiratory and head protection against CB agents

Challenges:

- > Adsorbent materials
- > End-of-service life indication
- > TICs/TIMs

Met or exceeded all JSGPM filter goals

Collective Protection Thrust Areas

Joint Science and Technology Panel for Chemical / Biological Defense

Filtration

Objectives: Develop filtration approaches that reduce frequency of filter changes and are applicable to all toxic materials

Challenges:

- > residual life indicators
- > filter regeneration
- biological filtration

❖ Completed evaluation of filter adsorbents against TICs

Shelters

Objectives: Develop collective protection shelters with improved environmental isolation against threats from CB and toxic materials

Challenges:

- > Hermetic seals
- > Rapid deployment

❖ Transiitoned low cost tentage effort to JTCOPS

Decontamination Thrust Areas

Joint Science and Technology Panel for Chemical / Biological Defense

Sensitive Equipment

Objectives: Decontaminate sensitive equipment, interiors of combat vehicles and aircraft, and interiors on the move.

Challenges:

- Identify freon alternatives
- Material compatibility
- > Man-portable, on-the-move decon
- > Agent destruction following removal

Conducted technology assessment and identified leading candidates for JSSED program. Identified hydrofluoroether as freon alternative.

Solid Phase

Objectives: Investigate and validate cost effective deactivation and destruction of CW agents rapidly by solid matrices. Extend technology to areas beyond sorbent decon.

Challenges:

- Mass transfer constraints
- > Enhance chemical reactivity

Measured kinetics of VX, GD, and HD on nanosize calcium oxide and aluminum oxide. Autocatalytic for HD elimination process.

Decontamination Thrust Areas

Joint Science and Technology Panel for Chemical / Biological Defense

Solution Chemistry

Objectives: Develop decon systems that supplement or replace existing systems used for immediate, operational and thorough decon and to replace DS2 and aqueous bleach in thorough decon applications.

Challenges:

- > Optimize chemistry co-solvents
- > Stabilize the system
- > Peroxide logistic issue

* Candidate formulations have been identified that react rapidly and effectively for HD, GD, and VX.

Enzyme Reactants

to solution

chemistry

Objectives: Develop and demonstrate a new generation of CB warfare agent decontaminants that are non-toxic, non-corrosive, non-flammable, environ. safe and lightweight.

Sub-thrust

Challenges:

- Identify appropriate enzymes
- > Genetic engineering needed for large scale production
- Maintenance of catalytic activity

Increased activity on enzymes with activity for V-agents by 10-fold over baseline. Identified materials technology approach to destroy H-agents.

Supporting Science and Technology Thrust Areas

Joint Science and Technology Panel for Chemical / Biological Defense

Threat Agents

Objectives: Maintain awareness of evolving threat agent materials and conduct R&D studies to validate and characterize, and to assess fate of CB materials in environment

Challenges:

- > ever expanding array of threats
- > infrastructure issues
- > identification of adequate simulants

❖ Conducted multiagency workshop on bioaerosol threat

Low-Level Operational Toxicology

Objectives: Develop sound values for exposure levels having physiological impact below acute response levels to guide development of detectors and protective equipment

Challenges:

- Identifying physiological indicators of low level exposure
- Developing exposure methodologies
- Extrapolating to human response

***** Extend CT range for acute effects

Supporting Science and Technology Thrust Areas

Joint Science and Technology Panel for Chemical / Biological Defense

Aerosol Technology

Objectives: Characterize and test developmental air samplers/collectors; evolve new concepts toward next-generation small air samplers

Challenges:

- > high velocity test challenges
- > size, power required to sample large volumes

❖ Developed isokinetic, isoaxial reference reference sampler; developed new microslit transpirated impactor

Acknowledgement

Joint Science and Technology Panel for Chemical / Biological Defense

Dr. S. Randolph Long